AEA - School of Engineering and Automotive

# Master Engineering Systems (MES)

Volante Reunion – November 10th, 2022 Dr. Ir. Saskia Monsma

> HAN\_UNIVERSITY OF APPLIED SCIENCES

#### Master Engineering Systems

- Part of the School of Engineering and Automotive
- Video drone



https://www.youtube.com/watch?v=ikc5PIPi\_IM

HAN\_UNIVERSITY OF APPLIED SCIENCES

#### Content

- Master Engineering Systems (MES)
  - Key points
  - Tracks
  - Modular structure and elective modules
  - Major Project
- Master Automotive Engineering (MAE) Double Degree
- Questions

**Technical master at HAN** 

- Master Engineering Systems with tracks
  - Automotive Systems
  - Control Systems
  - Sustainable Energy
- Master Automotive Engineering (MAE)
  - Double degree Master from 5 partner universities from HAN, CTU Prague,



ENSTA Brest, TUCH Chemnitz, ITB Bandung



# Han MES Key Points

- MSc Degree (90 EC)
- Professional Master
  - Strong practical focus (applied research)
  - For an engineering leadership role in business
  - Close cooperation with industry, institutes & research
  - Individual study choices: tracks with elective modules)
- International focus
- English
- Fulltime (1.5 yr) and part time (2.5 3 yr)

#### **Profile Engineering Systems**



#### MES – common modules

| Systems Modelling      |      | Applied Control                         |      |  |
|------------------------|------|-----------------------------------------|------|--|
| Applied Physics        | 2 EC | Feedback Control                        | 4 EC |  |
| Introduction Modelling | 2 EC | Multivariable systems and optimizations | 2 EC |  |
| Matlab Simulink        | 2 EC | Controller Implementation               | 2 EC |  |
| System Idenfication    | 2 EC | Apply Controller Strategies             | 2 EC |  |
| Energy based modelling | 2 EC |                                         |      |  |
| Minor Project          | 5 EC | Minor Project                           | 5 EC |  |

# MES – Tracks and elective modules

|        | Modules                                                                                                                                                                        | EC                                                  |                               |                          |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|--------------------------|--|
| Common | Systems Modelling                                                                                                                                                              | 15 EC                                               |                               |                          |  |
|        | Applied Control                                                                                                                                                                | 15 EC                                               |                               |                          |  |
| Tracks | Automotive Systems                                                                                                                                                             | Control Systems                                     | Sustainable Energy            |                          |  |
|        | Advanced Vehicle<br>Dynamics                                                                                                                                                   | Advanced Controller Design<br>/ Distributed Systems | Sustainable<br>Energy Systems | 30 EC<br>(15 credits per |  |
|        | Innovations in<br>Powertrains                                                                                                                                                  | Big Data & Small Data                               | Smart Power Supplies          | module)                  |  |
|        | Hydrogen Technology                                                                                                                                                            |                                                     | nyurogen reennology           |                          |  |
|        | Intelligent Mobility                                                                                                                                                           |                                                     |                               |                          |  |
|        |                                                                                                                                                                                |                                                     |                               |                          |  |
|        |                                                                                                                                                                                | 30 EC                                               |                               |                          |  |
|        | * Extra curricular: Big Data & Small Data for Automotive Systems and Sustainable Energy, e.g.,<br>parallel with Major Project. Also possible: only theoretical part (lectures) |                                                     |                               |                          |  |

#### Profile Track Automotive

Vehicle Dynamics Advanced Driver Assist Systems (ADAS) Collision warning & avoidance Lane keeping assistant Brake assist Electronic stability control



→ For cleaner, safer and smarter vehicles

Fuel consumption Emissions Engines Electrical & hybrid vehicles



Advanced Driver Assist Systems Intelligent mobility Cooperative, connected and automated mobility (C-ITS) Communication: V2V, V2I, V2X Legal & business aspects

# Profile Track Control Systems (1)

➔ For a thorough understanding of the advanced regulating systems used in today's industry as well as cutting-edge techniques that are directly applicable in an industrial environment









Profile Track Control Systems (2)

➔ For smart distributed systems that are low cost, energy efficient and can solve complex tasks cooperatively.

➔ Model and validate complex non-linear systems with multiple inputs and outputs using UML and/or SysML.





# • So ener

#### **Profile Track**

#### Sustainable Energy Systems

Sustainable and renewable energy systems for future energy requirements.

➔ Energy systems to work more efficiently on their own and in combination.

➔ Optimization of energy systems across multiple pathways and scales to increase reliability, reduce cost, and minimize environmental impact of our energy systems.





# Major Project



In this project you will

#### DEMONSTRATE YOUR MASTER LEVEL

By

- Solving a practical technical problem for a client
- Developing and applying new knowledge
- Demonstrating the final qualifications on master level

#### Module videos

# For short intro videos and descriptions of the modules, see:

<u>https://hanuniversity.com/en/programs/master/engineering-</u> <u>systems/fulltime/program/</u>

#### and scroll down for:

#### More about the compulsory modules [1]

#### TRACK-SPECIFIC MODULES

In this semester you follow 2 track-specific modules. Some tracks have a number of modules to choose from. The modules for each track are outlined below. Click on the link to get the full module descriptions.



#### **Automotive Systems**

Advanced Vehicle Dynamics; Advanced Controller Design; Electric, Hybrid & Fuel-Cell Powertrains; Hydrogen Technology; Sustainable Fuels, Engines and Emissions; Smart Infrastructure; Smart Vehicles.



Control Systems Big Data and Small Data; Advanced Controller Design.

Go to track for module descriptions  $\rightarrow$ 



Embedded Systems Distributed Systems; Big Data and Small Data. Go to track for module descriptions →



Sustainable Energy Sustainable Energy Systems; Smart Power Supply; Hydrogen Technology.

Go to track for module descriptions →

#### Go to track for module descriptions →

# **Teaching Methods and Specialization**

- Lectures, lab session, minor projects
- Practical and theoretical (research oriented)
- Interactive, flipped classroom
- International classroom
- Theory application in case studies
- Graduation assignment at a company, university or research institute

#### MES and student engagement

Student engagement in the Master engineering Systems is very important: please take a look at the following example:

> MASTER ENGINEERING SYSTEMS: AUTOMOTIVE SYSTEMS TRACK -BLENDED LEARNING



HAN\_UNIVERSITY OF APPLIED SCIENCES

#### Thank you for your attention and welcome!



#### Contact:

- Educationoffice.tm@han.nl
- +31 26 36 58 215

#### Info:

- <u>https://www.hanuniversity.com/en/programs/master/engineering-systems/fulltime/</u>
- <u>https://www.hanuniversity.com/en/programs/master/engineering-systems/parttime/</u>
- MAE double degree Master program: <u>www.emae.eu</u>

# Questions



# Professional Master Versus Academic Master

#### **Professional Master**

- At a University of Applied Sciences
- Focused on applying science in the professional field
- Prepares for job in professional field
- MSc.
- Use of scientific (research) methods, techniques and literature

#### Academic Master

- At a Research University
- Focused on scientific research
- Prepares for further study (PhD/DSc/Dr) or job in research
- MSc.
- Use of scientific (research) methods, techniques and literature