MASTER ENGINEERING SYSTEMS

HAN Technical Master Education

Volante Reunion – November 16th, 2019

Dr. Ir. Saskia Monsma

HAN_UNIVERSITY OF APPLIED SCIENCES Do you want ...

- ... to extend your knowledge and skills on Master's (MSc) level in Engineering?
- ... to work in a (Master level) job in a company?
- ... to focus on <u>applying</u> your knowledge in projects?
- ... to pay no more than the standard tuition fee?

If 'yes': a HAN Technical Master could be your choice!

HAN Technical Masters

- Master Engineering Systems (MES) with tracks
 - Automotive Systems
 - Control Systems
 - Sustainable Energy Systems
 - Embedded Systems
 - Lean Engineering
- Master Automotive Engineering (MAE)
 - Double degree Master from 5 partner universities from HAN, CTU Prague, ENSTA Brest, TUCH Chemnitz, ITB Bandung

- Professional Masters
 - Strong practical focus (applied research)
 - For an engineering leadership role in business
 - Close cooperation with industry, institutes & research (lecturers, guest lectures, Master Advisory Council, projects with industry and research, ...)
- International focus
- English

Professional Master Versus Academic Master

Professional Master

- At a University of Applied Sciences
- Focused on applying science in the professional field
- Prepares for job in professional field
- MSc.
- Use of scientific (research) methods, techniques and literature

Academic Master

- At a Research University
- Focused on scientific research
- Prepares for further study (PhD/DSc/Dr) or job in research
- MSc.
- Use of scientific (research) methods, techniques and literature

Profile Engineering Systems

Profile Track Automotive

Vehicle Dynamics Advanced Driver Assist Systems (ADAS) Collision warning & avoidance Lane keeping assistant Brake assist Electronic stability control

➔ For cleaner, safer and smarter vehicles

Fuel consumption Emissions Engines Electrical & hybrid vehicles

Advanced Driver Assist Systems Intelligent mobility Cooperative, connected and automated mobility (C-ITS) Communication: V2V, V2I, V2X Legal & business aspects

Profile Track Control Systems

➔ For a thorough understanding of the advanced regulating systems used in today's industry as well as cutting-edge techniques that are directly applicable in an industrial environment

Profile Track Embedded Systems

➔ For smart distributed systems that are low cost, energy efficient and can solve complex tasks cooperatively.

➔ Model and validate complex non-linear systems with multiple inputs and outputs using UML and/or SysML.

Profile Track Sustainable Energy Systems

Sustainable and renewable energy systems for future energy requirements.

→ Energy systems to work more efficiently on their own and in combination.

➔ Optimization of energy systems across multiple pathways and scales to increase reliability, reduce cost, and minimize environmental impact of our energy systems.

Profile Track Lean Engineering

➔ To deepen the knowledge of your technical bachelor.

➔ To use tools to improve manufacturing design and product development.

➔ To link technological developments with the needs of business processes.

	MES	Tracks				
St	tructure	Automotive Systems	Control Systems	Embedded Systems	Sustainable Energy	Lean Engineering
	Compulsory for all tracks		Systems Modelling (15 EC)			
	(30 EC)		Applied Control (15 EC)			
		Advanced Vehicle Dynamics	Advanced Controller Design	Distributed Systems	Sustainable Energy	Process Development
		Big Data & Small Data	Big Data & Small Data	Big Data & Small Data	Big Data & Small Data	Product Development
	Elective modules (30 EC)	Electric, Hybrid & Fuel Cell Powertrain			Smart Power Supplies	
	15 EC per Module	Sustainable Fuel, Engines and Emissions				
		Smart Infrastructure				
		Smart Vehicles				
	Compulsory for all tracks (30 EC)		Major Project (30 EC)			

Module Videos

For short intro videos and descriptions of the modules, see:

https://www.han.nl/opleidingen_courses/master/en/automotivesystems/course-overview/modules/

Software

HAN_UNIVERSITY OF APPLIED SCIENCES

Module Advanced Vehicle Dynamics

Major Project

In this project you will

DEMONSTRATE YOUR MASTER LEVEL

By

- Solving a practical technical problem for a client
- Developing and applying new knowledge
- Demonstrating the final qualifications on master level

Teaching Methods and Specialization

- Lectures, lab session, minor projects
- Practical and theoretical (research oriented)
- Interactive, flipped classroom
- International class room
- Theory application in case studies
- Graduation assignment at a company, university or research institute

Study Load and Duration

- MES: 90 EC (2550h.)
 - Full time: 1.5 year
 - Part-time: 2.5-3 year
- MAE: 120 EC (3360 h.)
 - Full time: 2 year; 1st y. in Prague, 2nd y. at HAN

Videos Video MES

Videos modules:

https://www.han.nl/oplei dingen_courses/master/e n/automotivesystems/courseoverview/modules/

Video Rollover mechanics for commercial vehicles

HAN Master | Automotive Systems | Blended Learning

> HAN_UNIVERSITY OF APPLIED SCIENCES

Thank you for your attentions and welcome!

- Contact:
 - Educationoffice.tm@han.nl
 - +31 26 36 58 215
- Info:
 - <u>https://www.han.nl/opleidingen_courses/master/en/engineering-systems/</u>
 - Open days and evenings: <u>https://www.han.nl/international/english/admissions/meet-us/</u>